4.6 Article

Electronic properties of the Zr-ZrO2-SiO2-Si(100) gate stack structure

期刊

JOURNAL OF APPLIED PHYSICS
卷 99, 期 6, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2181282

关键词

-

向作者/读者索取更多资源

The interface electronic structure of a layered Zr-ZrO2-SiO2-Si(100) system was studied with x-ray (h nu=1254 eV) and ultraviolet (h nu=21.2 eV) photoemission spectroscopies. In situ growth and characterization allow the structures to be deposited and studied in a stepwise manner without the risk of contamination. This study discusses the electronic properties including electron affinities and work functions, valence band maxima, band bending in the Si, and internal fields in a layered high-kappa gate stack. With this information the band alignments can be reconstructed and compared to predictions of the vacuum alignment models (i.e., the Schottky-Mott model for metal-semiconductor interfaces or the electron affinity model for heterojunctions) and the interface induced gap states model. The vacuum alignment models are first order approaches to determine the electronic barrier height for a heterojunction, and interface bonding can contribute to charge transfer across the interface, affecting the dipole contribution and altering the barrier heights. In this study, the band offsets and vacuum levels are independently measured, thereby determining the deviation from the vacuum level alignment models. The valence band offsets at the Si-SiO2, SiO2-ZrO2, and ZrO2-Zr are found to be 4.4 +/- 0.1, 0.67 +/- 0.24, and 4.9 +/- 0.44 eV, respectively. For these same interfaces the deviations from the electron affinity or Schottky-Mott model are determined to be 0.2 +/- 0.14, -1.43 +/- 0.29, and 1.3 +/- 0.39 eV, respectively. (c) 2006 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据