4.7 Article

The crystal structure of 5′-deoxy-5′-methylthioadenosine phosphorylase II from Sulfolobus solfataricus, a thermophilic enzyme stabilized by intramolecular disulfide bonds

期刊

JOURNAL OF MOLECULAR BIOLOGY
卷 357, 期 1, 页码 252-262

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2005.12.040

关键词

nucleoside phosphorylase; polyamine biosynthesis; thermal stability; disulfide bonds

资金

  1. NCI NIH HHS [CA94000] Funding Source: Medline
  2. NCRR NIH HHS [RR15301] Funding Source: Medline

向作者/读者索取更多资源

The crystal structure of Sulfolobus solfataricus 5'-deoxy-5'-methylthioadenosine phosphorylase II (SsMTAPII) in complex with 5'-deoxy-5-methylthioadenosine (MTA) and sulfate was determined to 1.45 A resolution. The hexameric structure of SsMTAPII is a dimer-of-trimers with one active site per monomer. The oligomeric assembly of the trimer and the monomer topology of SsMTAPII are almost identical with trimeric human 5-deoxy-5 -methylthioadenosine phosphorylase (hMTAP). SsMTAPII is the first reported hexameric member in the trimeric class of purine nucleoside phosphorylase (PNP) from Archaea. Unlike hMTAP, which is highly specific for MTA, SsMTAPII also accepts adenosine as a substrate. The residues at the active sites of SsMTAPl1 and hMTAP are almost identical. The broad substrate specificity of SsMTAPII may be due to the flexibility of the C-terminal loop. SsMTAPII is extremely thermoactive and thermostable. The three-dimensional structure of SsMTAPII suggests that the unique dimer-of-trimers quaternary structure, a CXC motif at the C terminus, and two pairs of intrasubunit disulfide bridges may play an important role in its thermal stability. (c) 2005 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据