4.7 Article

Model for RNA binding and the catalytic site of the RNase kid of the bacterial parD toxin-antitoxin system

期刊

JOURNAL OF MOLECULAR BIOLOGY
卷 357, 期 1, 页码 115-126

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2005.12.033

关键词

docking; NMR; protein-RNA complex; ribonuclease; toxin-antitoxin

向作者/读者索取更多资源

The toxin Kid and antitoxin Kis are encoded by the parD operon of Escherichia coli plasmid RI. Kid and its chromosomal homologues MazF and ChpBK have been shown to inhibit protein synthesis in cell extracts and to act as ribosome-independent endoribonucleases in vitro. Kid cleaves RNA preferentially at the 5' side of the A residue in the nucleotide sequence 5'-UA(A/C)-3' of single-stranded regions. Here, we show that RNA cleavage by Kid yields two fragments with a 2':3'-cyclic phosphate group and a free 5'-OH group, respectively. The cleavage mechanism is similar to that of RNases A and T1, involving the uracil 2'-OH group. Via NMR titration studies With all uncleavable RNA mimic, we demonstrate that residues of both monomers of the Kid dimer together form a concatenated RNA-binding surface. Docking calculations based on the NMR chemical shifts, the cleavage mechanism and previously reported mutagenesis data provide a detailed picture of the position of the AUACA fragment within the binding pocket. We propose that residues D75, R73 and H17 form the active site of the Kid toxin, where D75 and R73 are the catalytic base and acid, respectively. The RNA sequence specificity is defined by residues T46, S47, A55, F57, T69, V71 and R73. Our data show the importance of these residues for Kid function, and the implications of our results for related toxins, Such as MazF, CcdB and RelE, are discussed. (c) 2005 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据