4.7 Article

Coupled atomistic-continuum simulations using arbitrary overlapping domains

期刊

JOURNAL OF COMPUTATIONAL PHYSICS
卷 213, 期 1, 页码 86-116

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcp.2005.08.014

关键词

atomistic simulation; continuum mechanics; coupling; finite elements

向作者/读者索取更多资源

We present a formulation for coupling atomistic and continuum simulation methods for application to both quasistatic and dynamic analyses. In our formulation, a coarse-scale continuum discretization is assumed to cover all parts of the computational domain with atomistic crystals introduced only in regions of interest. The geometry of the discretization and crystal are allowed to overlap arbitrarily. Our approach uses interpolation and projection operators to link the kinematics of each region, which are then used to formulate a system potential energy from which we derive coupled expressions for the forces acting in each region. A hyperelastic constitutive formulation is used to compute the stress response of the defect-free continuum with constitutive properties derived from the Cauchy-Born rule. A correction to the Cauchy-Born rule is introduced in the overlap region to minimize fictitious boundary effects. Features of our approach will be demonstrated with simulations in one, two and three dimensions. (c) 2005 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据