4.7 Article

High order matched interface and boundary method for elliptic equations with discontinuous coefficients and singular sources

期刊

JOURNAL OF COMPUTATIONAL PHYSICS
卷 213, 期 1, 页码 1-30

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcp.2005.07.022

关键词

immersed boundary method; immersed interface inethod; ghost fluid method; matched interface and boundary; elliptic equations; high order method

向作者/读者索取更多资源

This paper introduces a novel high order interface scheme, the matched interface and boundary (MIB) method, for solving elliptic equations with discontinuous coefficients and singular sources on Cartesian grids. By appropriate use of auxiliary line and/or fictitious points, physical jump conditions are enforced at the interface. Unlike other existing interface schemes, the proposed method disassociates the enforcement of physical jump conditions from the discretization of the differential equation under study. To construct higher order interface schemes, the proposed MIB method bypasses the major challenge of implementing high order jump conditions by repeatedly enforcing the lowest order jump conditions. The proposed MIB method is of arbitrarily high order, in principle. In treating straight, regular interfaces we construct MIB schemes up to 16th-order. For more general elliptic problems with curved, irregular interfaces and boundary, up to 6th-order MIB schemes have been demonstrated. By employing the standard high-order finite difference schemes to discretize the Laplacian, the present MIB method automatically reduces to the standard central difference scheme when the interface is absent. The immersed interface method (IIM) is regenerated for a comparison study of the proposed method. The robustness of the MIB method is verified against the large magnitude of the jump discontinuity across the interface. The nature of high efficiency and low memory requirement of the MIB method is extensively validated via solving various elliptic immersed interface problems in two- and three-dimensions. (c) 2005 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据