4.6 Article

Mutation of a conserved threonine in the third transmembrane helix of α- and β-connexins creates a dominant-negative closed gap junction channel

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 281, 期 12, 页码 7994-8009

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M506533200

关键词

-

资金

  1. NCI NIH HHS [CA048049] Funding Source: Medline
  2. NCRR NIH HHS [RR04050, P41RR02250] Funding Source: Medline
  3. NIGMS NIH HHS [GM065937, GM072881, GM048773, R01 GM065937] Funding Source: Medline

向作者/读者索取更多资源

Single site mutations in connexins have provided insights about the influence specific amino acids have on gap junction synthesis, assembly, trafficking, and functionality. We have discovered a single point mutation that eliminates functionality without interfering with gap junction formation. The mutation occurs at a threonine residue located near the cytoplasmic end of the third transmembrane helix. This threonine is strictly conserved among members of the alpha- and beta-connexin subgroups but not the gamma-subgroup. In HeLa cells, connexin43 and connexin26 mutants are synthesized, traffic to the plasma membrane, and make gap junctions with the same overall appearance as wild type. We have isolated connexin26T135A gap junctions both from HeLa cells and baculovirus-infected insect Sf9 cells. By using cryoelectron microscopy and correlation averaging, difference images revealed a small but significant size change within the pore region and a slight rearrangement of the subunits between mutant and wild-type connexons expressed in Sf9 cells. Purified, detergent-solubilized mutant connexons contain both hexameric and partially disassembled structures, although wild-type connexons are almost all hexameric, suggesting that the three-dimensional mutant connexon is unstable. Mammalian cells expressing gap junction plaques composed of either connexin43T154A or connexin26T135A showed an absence of dye coupling. When expressed in Xenopus oocytes, these mutants, as well as a cysteine substitution mutant of connexin50 (connexin50T157C), failed to produce electrical coupling in homotypic and heteromeric pairings with wild type in a dominant-negative effect. This mutant may be useful as a tool for knocking down or knocking out connexin function in vitro or in vivo.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据