4.5 Article

Totally secure classical communication utilizing Johnson (-like) noise and Kirchoff's law

期刊

PHYSICS LETTERS A
卷 352, 期 3, 页码 178-182

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.physleta.2005.11.062

关键词

secure communication; stealth communication; classical information; eavesdropper detection; classical bit entanglement

向作者/读者索取更多资源

An absolutely secure, fast, inexpensive, robust, maintenance-free and low-power-consumption communication is proposed. The states of the information bit are represented by two resistance values. The sender and the receiver have such resistors available and they randomly select and connect one of them to the channel at the beginning of each clock period. The thermal noise voltage and current can be observed but Kirchoff's law provides only a second-order equation. A secure bit is communicated when the actual resistance values at the sender's side and the receiver's side differ. Then the second order equation yields the two resistance values but the eavesdropper is unable to determine the actual locations of the resistors and to find out the state of the sender's bit. The receiver knows that the sender has the inverse of his bit, similarly to quantum entanglement. The eavesdropper can decode the message if, for each bits, she inject current in the wire and measures the voltage change and the current changes in the two directions. However, in this way she gets discovered by the very first bit she decodes. Instead of thermal noise, proper external noise generators should be used when the communication is not aimed to be stealth. (c) 2005 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据