4.2 Article

Coordinated modulation of locomotor muscle synergies constructs straight-ahead and curvilinear walking in humans

期刊

EXPERIMENTAL BRAIN RESEARCH
卷 170, 期 3, 页码 320-335

出版社

SPRINGER
DOI: 10.1007/s00221-005-0215-7

关键词

locomotion; navigation; balance; EMG; human

向作者/读者索取更多资源

We describe the muscle synergies accompanying steering of walking along curved trajectories, in order to analyze the simultaneous control of progression and balance-threatening emerging forces. For this purpose, we bilaterally recorded in ten subjects the electromyograms (EMGs) of a representative sample of leg and trunk muscles (n=16) during continuous walking along one straight and two curved trajectories at natural speed. Curvilinear locomotion involved a graded, limb-dependent modulation of amplitude and timing of activity of the muscles of the legs and trunk. The turn-related modulation of the motor pattern was highly coordinated amongst muscles and body sides. For all muscles, linear relationships were detected between the spatial and temporal features of muscle EMG activity. The largest modulation of EMG was observed in gastrocnemius medialis and lateralis muscles, which showed opposite changes in timing and amplitude during curve-walking. Moreover, amplitude and timing characteristics of muscle activities were significantly correlated with the spatial and temporal gait adaptations that are associated with curvilinear locomotion. The present results reveal that fine-modulation of the muscle synergies underlying straight-ahead locomotion is enough to generate the adequate propulsive forces to steer walking and maintain balance. These findings suggest that the turn-related command operates by modulation of the phase relationships between the tightly coupled neuronal assemblies that drive motor neuron activity during walking. This would produce the invariant templates for locomotion kinematics that are at the base of human navigation in space.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据