4.6 Article

Neural coding of distinct statistical properties of reward information in humans

期刊

CEREBRAL CORTEX
卷 16, 期 4, 页码 561-573

出版社

OXFORD UNIV PRESS INC
DOI: 10.1093/cercor/bhj004

关键词

dopamine; error prediction; fMRI; gambling; information theory; uncertainty

向作者/读者索取更多资源

Brain processing of reward information is essential for complex functions such as learning and motivation. Recent primate electrophysiological studies using concepts from information, economic and learning theories indicate that the midbrain may code two statistical parameters of reward information: a transient reward error prediction signal that varies linearly with reward probability and a sustained signal that varies highly non-linearly with reward probability and that is highest with maximal reward uncertainty (reward probability = 0.5). Here, using event-related functional magnetic resonance imaging, we disentangled these two signals in humans using a novel paradigm that systematically varied monetary reward probability, magnitude and expected reward value. The midbrain was activated both transiently with the error prediction signal and in a sustained fashion with reward uncertainty. Moreover, distinct activity dynamics were observed in post-synaptic midbrain projection sites: the prefrontal cortex responded to the transient error prediction signal while the ventral striatum covaried with the sustained reward uncertainty signal. These data suggest that the prefrontal cortex may generate the reward prediction while the ventral striatum may be involved in motivational processes that are useful when an organism needs to obtain more information about its environment. Our results indicate that distinct functional brain networks code different aspects of the statistical properties of reward information in humans.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据