4.6 Article

Delivery of liposomal doxorubicin (Doxil) in a breast cancer tumor model: Investigation of potential enhancement by pulsed-high intensity focused ultrasound exposure

期刊

ACADEMIC RADIOLOGY
卷 13, 期 4, 页码 469-479

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.acra.2005.08.024

关键词

pulsed-high intensity focused ultrasound; liposomal doxorubicin; enhanced delivery; acoustic radiation forces

向作者/读者索取更多资源

Rationale and Objectives. To investigate the potential of using pulsed high-intensity focused ultrasound (HIFU) exposures to enhance the delivery, and hence therapeutic effect of liposomal doxorubicin (Doxil) in a murine breast cancer tumor model. Materials and Methods. Tumors were grown in the bilateral flanks of mice using a mammary adenocarcinoma cell line. Experiments consisted of exposing one of two tumors to pulsed-HIFU, followed by tail vein injections of Doxil. Tumor growth rates were monitored, and assays carried out for doxorubicin concentration in these tumors as well as in a second (squamous cell carcinoma) tumor model and in muscle. Laser scanning confocal microscopy was used with fluorescent probes to observe both the uptake of polystyrene nanoparticles and dilation of exposed blood vessels. Additional experiments involving histologic analysis and real-time temperature measurements were performed to determine the safety of the exposures. Results. Pulsed-HIFU exposures were shown to be safe, producing no apparent deleterious effects in the tumors. The exposures, however, were not found to enhance the delivery of Doxil, and consequently did not allow for lower doses for obtaining tumor regression. Imaging with a fluorescent dextran showed blood vessels to be dilated as a result of the exposures. Experiments with polystyrene nanoparticles of similar size to the liposomes showed a greater abundance to be present in the treated tumors. Conclusion. Although past studies have shown the advantages of pulsed-HIFU exposures for enhancing delivery, this was not observed with the liposomes, apparently because of their inherent ability to preferentially accumulate into tumors on their own. Potential mechanisms for enhanced uptake of non-liposomal nanoparticles are discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据