4.6 Review

Substrate rigidity and force define form through tyrosine phosphatase and kinase pathways

期刊

TRENDS IN CELL BIOLOGY
卷 16, 期 4, 页码 213-223

出版社

ELSEVIER SCIENCE LONDON
DOI: 10.1016/j.tcb.2006.02.005

关键词

-

向作者/读者索取更多资源

Cell forces define cell morphology, alterations in which are caused by tyrosine kinase and phosphatase mutations, which implies a causal linkage. Recent studies have shown that phosphotyrosine signaling is involved in force sensing for cells on flat surfaces. Early force-dependent activation of Src family kinases by phosphatases or cytoskeleton stretch leads to the activation of downstream signaling. In addition, force generation by cells depends on a feedback mechanism between matrix rigidity or force generation and myosin contractility. Components of the force-sensing pathway are linked to the integrin-cytoskeleton complex at sites of force application and serve as scaffolds for signaling processes. Thus, early events in force detection are mechanically induced cytoskeletal changes that result in biochemical signals to mechanoresponsive pathways that then regulate cell form.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据