4.7 Article

5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside and metformin inhibit hepatic glucose phosphorylation by an AMP-activated protein kinase-independent effect on glucokinase translocation

期刊

DIABETES
卷 55, 期 4, 页码 865-874

出版社

AMER DIABETES ASSOC
DOI: 10.2337/diabetes.55.04.06.db05-1178

关键词

-

向作者/读者索取更多资源

AMP-activated protein kinase (AMPK) controls glucose uptake and glycolysis in muscle. Little is known about its role in liver glucose uptake, which is controlled by glucokinase. We report here that 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR), metformin, and oligomycin activated AMPK and inhibited glucose phosphorylation and glycolysis in rat hepatocytes. In vitro experiments demonstrated that this inhibition was not due to direct phosphorylation of glucokinase or its regulatory protein by AMPK. By contrast, AMPK phosphorylated liver 6-phosphofructo-2-kinase-/fructose-2,6-bisphosphatase without affecting activity. Inhibitors of the endothelial nitric oxide synthase, stress kinases, and phosphatidylinositol 3-kinase pathways did not counteract the effects of AICAR, metformin, or oligomycin, suggesting that these signaling pathways were not involved. Interestingly, the inhibitory effect on glucose phosphorylation of these well-known AMPK activators persisted in primary cultured hepatocytes from newly engineered mice lacking both liver alpha(1) and alpha(2) AMPK catalytic subunits, demonstrating that this effect was clearly not mediated by AMPK. Finally, AICAR, metformin, and oligomycin were found to inhibit the glucose-induced translocation of glucokinase from the nucleus to the cytosol by a mechanism that could be related to the decrease in intracellular ATP concentrations observed in these conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据