4.3 Article

Human androgen receptor gene ligand-binding-domain mutations leading to disrupted interaction between the N- and C-terminal domains

期刊

JOURNAL OF MOLECULAR ENDOCRINOLOGY
卷 36, 期 2, 页码 361-368

出版社

SOC ENDOCRINOLOGY
DOI: 10.1677/jme.1.01885

关键词

-

资金

  1. MRC [MC_U105184335] Funding Source: UKRI
  2. Medical Research Council [MC_U105184335] Funding Source: researchfish
  3. Medical Research Council [MC_U105184335] Funding Source: Medline

向作者/读者索取更多资源

Most mutations in the androgen receptor (AR) ligand-binding domain (LBD) disrupt binding of the natural ligands: dihydrotestosterone and testosterone. Some AR LBD mutations do not affect ligand binding but they disrupt androgen-induced interaction of the N-terminal motif FXXLF and C-terminal activation function 2 (AF2). As N-/C-terminal interaction requires binding of agonists that have androgen activity in vivo, it correlates well with the phenotype. To study this further, we searched the Cambridge intersex database for patients with a detected missense mutation in the AR LBD presenting with normal ligand binding. Six mutations (D695N, Y763C, R774H, Q798E, R855H and L907F) were selected and introduced by site-directed mutagenesis into the pSVAR and pM-LBD plasmids. The transactivational potential of the wild-type and mutant androgen receptors (pSVAR) was examined by dual-luciferase assay using pGRE-LUC as a reporter vector. N-/C-terminal interaction was studied by mammalian two-hybrid assay using wild-type and mutated AR LBD (pM-LBD), pVF`16-rAR-(5-538) (encoding rat amino-terminal AR) and pCMX-UAS-TK-LUC as a reporter. AR LBD mutations D695N, R774H and L907F presented with minimal transactivational capacity and N-/C-terminal interaction was totally disrupted. Mutations Y763C and R885H had some residual dose-dependent transactivational potential and minimal N-/C-terminal interaction. Q798E presented with good transactivational potential and it showed only mild reduction in N-/C-terminal interaction. With the selected mutations, N-/C-terminal interaction correlated well with AR transactivation and the phenotype. Disrupted N-/C-terminal interaction is capable of providing the mechanism for androgen-insensitivity syndrome in most cases where the mutation in the LBD does not disrupt ligand binding. Furthermore, mutations leading to the disrupted N-/C-terminal interaction can be localized to certain critical regions in the three-dimensional structure of the AR LBD. Our study shows that apart from the previously reported regions, regions just before helix 3, between helices 5 and 6, and at helix 10 are also important for AR N-/C-terminal interaction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据