4.7 Article Proceedings Paper

Prostaglandin H synthase-catalyzed bioactivation of amphetamines to free radical intermediates that cause CNS regional DNA oxidation and nerve terminal degeneration

期刊

FASEB JOURNAL
卷 20, 期 6, 页码 638-650

出版社

FEDERATION AMER SOC EXP BIOL
DOI: 10.1096/fj.05-5271com

关键词

MDMA; methamphetamine; brainstem; DNA oxidation

向作者/读者索取更多资源

Reactive oxygen species (ROS) are implicated in amphetamine-initiated neurodegeneration, but the mechanism is unclear. Here, we show that amphetamines are bioactivated by CNS prostaglandin H synthase (PHS) to free radical intermediates that cause ROS formation and neurodegenerative oxidative DNA damage. In vitro incubations of purified PHS-1 with 3,4-methylenedioxyamphetamine (MDA) and methamphetamine ( METH) demonstrated PHS-catalyzed time- and concentration-dependent formation of an amphetamine carbon- and/or nitrogen-centered free radical intermediate, and stereoselective oxidative DNA damage, evidenced by 8-oxo-2'-deoxyguanosine (8-oxo-dG) formation. Similarly in vivo, MDA and METH caused dose- and time- dependent DNA oxidation in multiple brain regions, remarkably dependent on the regional PHS levels, including the striatum and substantia nigra, wherein neurodegeneration of dopaminergic nerve terminals was evidenced by decreased immunohistochemical staining of tyrosine hydroxylase. Motor impairment using the rotarod test was evident within 3 wk after the last drug dose, and persisted for at least 6 months. Pretreatment with the PHS inhibitor acetylsalicylic acid blocked MDA-initiated DNA oxidation and protected against functional motor impairment for at least 1.5 months after drug treatment. This is the first direct evidence for PHS-catalyzed bioactivation of amphetamines causing temporal and regional differences in CNS oxidative DNA damage directly related to structural and functional neurodegenerative consequences. - Jeng, J., Ramkissoon, A., Parman, T., Wells, P. G. Prostaglandin H synthase-catalyzed bioactivation of amphetamines to free radical intermediates that cause CNS regional DNA oxidation and nerve terminal degeneration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据