4.8 Article

Gaseous hexane biodegradation by Fusarium solani in two liquid phase packed-bed and stirred-tank bioreactors

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 40, 期 7, 页码 2390-2395

出版社

AMER CHEMICAL SOC
DOI: 10.1021/es051512m

关键词

-

向作者/读者索取更多资源

Biofiltration of hydrophobic volatile pollutants is intrinsically limited by poor transfer of the pollutants from the gaseous to the liquid biotic phase, where biodegradation occurs. This study was conducted to evaluate the potential of silicone oil for enhancing the transport and subsequent biodegradation of hexane by the fungus Fusarium solani in various bioreactor configurations. Silicone oil was first selected among various solvents for its biocompatibility, nonbiodegradability, and good partitioning properties toward hexane. In batch tests, the use of silicone oil improved hexane specific biodegradation by approximately 60%. Subsequent biodegradation experiments were conducted in stirred-tank (1.5 L) and packed-bed (2.5 L) bioreactors fed with a constant gaseous hexane load of 180 g center dot m(reactor)(-3)center dot h(-1) and operated for 12 and 40 days, respectively. In the stirred reactors, the maximum hexane elimination capacity (EC) increased from 50 g center dot m(reactor)(-3)center dot h(-1) (removal efficiency, RE of 28%) in the control not supplied with silicone oil to 120 g center dot m(reactor)(-3)center dot h(-1) in the biphasic system (67% RE). In the packed-bed bioreactors, the maximum EC ranged from 110 (50% RE) to 180 g center dot m(reactor)(-3)center dot h(-1) (>90% RE) in the control and two-liquid-phase systems, respectively. These results represent, to the best of our knowledge, the first reported case of fungi use in a two-liquid-phase bioreactor and the highest hexane removal capacities so far reported in biofilters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据