4.5 Article

Curcumin-induced histone hypoacetylation enhances caspase-3-dependent glioma cell death and neurogenesis of neural progenitor cells

期刊

STEM CELLS AND DEVELOPMENT
卷 15, 期 2, 页码 165-174

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/scd.2006.15.165

关键词

-

向作者/读者索取更多资源

Acetylation of histones and nonhistone proteins is an important post-translational modification involved in the regulation of gene expression in mammalian cells. Dysfunction of histone acetyltransferase (HAT) is often associated with the manifestation of several diseases. In this report, HATs are new targets for the development of therapeutics. Our studies first proved that curcumin induces histone hypoacetylation in brain cancer cells and finally induces apoptotic cell death through a (PARP)and caspase 3-mediated manner. In addition, curcumin induces recontrolling of neural stem cell fates. It induces effective neurogenesis, synaptogenesis, and migration of neural progenitor cells in vitro in brain-derived adult neural stem cells. We also confirmed the neurogenic effect of curcumin in our in vivo experiments. Curcumin actively suppressed differentiation in astrocytes while promoting differentiation into the neurons associated with decrease of histone H3 and H4 acetylation. We suggest that histone hypoacetylation plays an important role in determine stem cell fate through controlling the simultaneous expression of many genes. Thus, the present finding that curcumin, a nontoxic dietary compound, is a histone acetyltransferase inhibitor would supply a new window to understand further the molecular mechanism of histone acetylase inhibitors (HAI) in cancer and neural stem cells and provide a new target molecule for treating central nervous system disorders.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据