4.4 Article

Friction reduction and antiwear capacity of engine oil blends containing zinc dialkyl dithiophosphate and molybdenum-complex additives

期刊

TRIBOLOGY TRANSACTIONS
卷 49, 期 2, 页码 151-165

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/05698190500544353

关键词

boundary lubrication; friction; antiwear tribofilms; wear mechanisms; Mo complexes and ZnDTP additives

向作者/读者索取更多资源

The efficacy of oil blends containing zinc dialkyl dithiophosphate (ZnDTP) and molybdenum (Mo)-complex additives to improve the tribological properties of boundary-lubricated steel surfaces was investigated e experimentally The performance of oil blends containing three different types of Mo-conlplex additives of varying Mo and S contents with or without primary/secondary ZnDTP additions were investigated at 100 degrees C The formation of antiwear tribofilms was detected in situ by observing the friction force and contact voltage responses. Wear volume and surface topography measurements obtained front surface profilometry and scanning electron microscopy studies were used to quantify the antiwear capacity of the formed tribofilms. The tribological properties are interpreted in terms of the tribofilm chemical composition studied by X-ray photoelectron spectroscopy. The results demonstrate that blending the base oil only with the Mo-compound additives did not improve the firiction characteristics. However, an optimum mixture of Mo complexes and ZnDTP additive provided sufficient amounts of S and Mo for the formation of antiwear tribofilms containing low-shear strength MoS2 that reduces sliding friction. In addition, the formation of a glassy phosphate phase due to the synergistic effect of the ZnDTP additive enhances the wear resistance of the tribofilm. This study shows that ZnDTP- and Mo-containing additives incorporated in oil blends at optimum proportions improve significantly the tribological properties of boundary-lubricated steel surfaces sliding at elevated temperatures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据