4.6 Article

Short-pulse photoassociation in rubidium below the D1 line -: art. no. 043409

期刊

PHYSICAL REVIEW A
卷 73, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.73.043409

关键词

-

向作者/读者索取更多资源

Photoassociation of two ultracold rubidium atoms and the subsequent formation of stable molecules in the singlet ground and lowest triplet states is investigated theoretically. The method employs laser pulses inducing transitions via excited states correlated to the 5S+5P(1/2) asymptote. Weakly bound molecules in the singlet ground or lowest triplet state can be created by a single pulse while the formation of more deeply bound molecules requires a two-color pump-dump scenario. More deeply bound molecules in the singlet ground or lowest triplet state can be produced only if efficient mechanisms for both pump and dump steps exist. While long-range 1/R-3 potentials allow for efficient photoassociation, stabilization is facilitated by the resonant spin-orbit coupling of the 0(u)(+) states. Molecules in the singlet ground state bound by a few wave numbers can thus be formed. This provides a promising first step toward ground-state molecules which are ultracold in both translational and vibrational degrees of freedom.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据