4.2 Article

Pore architecture of diatom frustules: Potential nanostructured membranes for molecular and particle separations

期刊

JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY
卷 6, 期 4, 页码 982-989

出版社

AMER SCIENTIFIC PUBLISHERS
DOI: 10.1166/jnn.2006.174

关键词

diatoms; frustules; porous nanostructures; membranes; molecular separation; particle separation; microfluidics

向作者/读者索取更多资源

Diatoms produce diverse three-dimensional regular silica structures with nanometer to micrometer dimensions and hold considerable promise for biological and biomimetic fabrication of nanostructured materials and devices. In the present work, we describe the ultrastructural characterization of porous structures in diatom biosilica and discuss their potential as membrane filters for diffusion based separations. The frustules of two centric diatom species, Coscinodiscus sp. and Thalassiosira eccentrica, were investigated using scanning electron microscopy and atomic force microscopy. Their morphological features, including pore size, shape, porosity, and pore organization, are described. We observed that although pore organization in frustules of Thalassiosira eccentrica and Coscinodiscus sp. is in reverse order, a striking commonality is the size range of the smallest pores in both species (around 40 nm). The consensus lower pore size suggests that frustule valves have a common function at this size of excluding viruses or other deleterious particles, and the pore size and organization is optimized for this purpose. We suggest and implement an experimental approach to study the potential of diatom frustules for diffusive separation of molecular or nanoparticular components in microfluidic or lab-on-a-chip environments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据