4.7 Article

High glucose activates nuclear factor of activated T cells in native vascular smooth muscle

期刊

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/01.ATV.0000209513.00765.13

关键词

NFAT; high glucose; vascular smooth muscle; extracellular nucleotides; GSK-3

向作者/读者索取更多资源

Objective-Hyperglycemia has been suggested to play a role in the development of vascular disease associated with diabetes. Atypical Ca2+ signaling and gene expression are characteristic of vascular dysfunction; however, little is known regarding the effects of high glucose on Ca2+-dependent transcription in the vascular wall. Methods and Results-Using confocal immunofluorescence, we show that modest elevation of extracellular glucose (ie, from 2 to 11.5 mmol/L) increased [Ca2+](i), leading to nuclear accumulation of nuclear factor of activated T cells (NFAT) in intact cerebral arteries from mouse. This was accompanied by increased NFAT-dependent transcriptional activity. Both the increase in Ca2+ and NFAT activation were prevented by the ectonucleotidase apyrase, suggesting a mechanism involving the release of extracellular nucleotides. We provide evidence that the potent vasoconstrictors and growth stimulators UTP and UDP mediate glucose-induced NFAT activation via P2Y receptors. NFAT nuclear accumulation was inhibited by the voltage-dependent Ca2+ channel blockers verapamil and nifedipine, the calcineurin inhibitor cyclosporine A, and the novel NFAT blocker A-285222. High glucose also regulated glycogen synthase kinase 3 beta and c-Jun N-terminal kinase activity, yielding decreased kinase activity and reduced export of NFAT from the nucleus, providing additional mechanisms underlying the glucose-induced NFAT activation. Conclusions-Our results identify the calcineurin/NFAT signaling pathway as a potential metabolic sensor for the arterial smooth muscle response to high glucose.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据