4.7 Article

Protection of INS-1 cells from free fatty acid-induced apoptosis by targeting hOGG1 to mitochondria

期刊

DIABETES
卷 55, 期 4, 页码 1022-1028

出版社

AMER DIABETES ASSOC
DOI: 10.2337/diabetes.55.04.06.db05-0865

关键词

-

资金

  1. NIA NIH HHS [AG19602] Funding Source: Medline
  2. NIEHS NIH HHS [ES05865, ES03456] Funding Source: Medline
  3. NINDS NIH HHS [NS 014208] Funding Source: Medline

向作者/读者索取更多资源

Chronic exposure to elevated levels of free fatty acids (FFAs) impairs pancreatic beta-cell function and contributes to the decline of insulin secretion in type 2 diabetes. Previously, we reported that FFAs caused increased nitric oxide (NO) production, which damaged mitochondrial DNA (mtDNA) and ultimately led to apoptosis in INS-1 cells. To firmly establish the link between FFA-generated mtDNA damage and apoptosis, we stably transfected INS-1 cells with an expression vector containing the gene for the DNA repair enzyme human 8-oxoguanine DNA glycosylase/ apurinic lyase (hOGG1) downstream of the mitochondrial targeting sequence (MTS) from manganese superoxide dismutase. Successful integration of MTS-OGG1. into the INS-1 cellular genome was confirmed by Southern blot analysis. Western blots and enzyme activity assays revealed that hOGG1 was targeted to mitochondria and the recombinant enzyme was active. MTS-OGG1 cells showed a significant decrease in FFA-induced mtDNA damage compared with vector-only transfectants. Additionally, hOGG1 overexpression in mitochondria decreased FFA-induced inhibition of ATP production and protected INS-1 cells from apoptosis. These results indicate that mtDNA damage plays a pivotal role in FFA-induced beta-cell dysfunction and apoptosis. Therefore, targeting DNA repair enzymes into beta-cell mitochondria could be a potential therapeutic strategy for preventing or delaying the onset of type 2 diabetes symptoms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据