4.0 Article

Effects of COX-1 and COX-2 inhibitors on the firing of rat midbrain dopaminergic neurons - Possible involvement of endogenous kynurenic acid

期刊

SYNAPSE
卷 59, 期 5, 页码 290-298

出版社

WILEY
DOI: 10.1002/syn.20241

关键词

schizophrenia; glutamate; indomethacin; parecoxib; d-cycloserine; L-701,324

向作者/读者索取更多资源

Kynurenic acid (KYNA) is an endogenous glutamate-receptor antagonist with a preferential action at the glycine-site of the NMDA-receptor. In the present in vivo study, the importance of brain KYNA to modulate the activity of dopamine (DA) neurons in the ventral tegmental area (VTA) was analyzed by utilizing the decrease in brain KYNA formation induced by the cyclooxygbnase (COX)-2 inhibitor parecoxib. A reduction in brain KYNA concentration (39-44%) by parecoxib (25 mg/kg, i.v., 1 h or, i.p., 3.5 h) was associated with a decreased firing rate and burst firing activity. In concordance, an increase in brain KYNA concentration (150-300%), induced by the COX-1 inhibitor indomethacin (50 mg/kg, i.v., 1 h or, i.p., 3.5 h), produced opposite effects, that is, increased firing rate and burst firing activity. The decrease and increase in neuronal firing of VTA DA neurons by the COX-inhibitors was reversed by L-701,324 (antagonist at the NMDA-glycine site; 0.06-2 mg/kg, i.v.) and by D-cycloserine (partial agonist at the NMDA-glycine site; 2-32 mg/kg, i.v.), respectively. In addition, the parecoxib-induced decrease in firing rate and burst firing activity was effectively blocked by pretreatment with kynurenine (5 mg/kg, i.p., 30 min), the immediate precursor of KYNA. Present results suggest that the action of COX-inhibitors on the firing of VTA DA neurons are linked to their effects on KYNA formation and that endogenous KYNA is tonically modulating the neuronal activity of VTA DA neurons. Such a modulatory action of KYNA should be of importance for the functioning of mesocorticolimbic DA pathway.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据