4.7 Article

Acid hydrolysis to partition plant material into decomposable and resistant fractions for use in the Rothamsted carbon model

期刊

SOIL BIOLOGY & BIOCHEMISTRY
卷 38, 期 4, 页码 812-816

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.soilbio.2005.07.008

关键词

DPM; litter quality; RothC; RPM; simulation model; soil organic matter

向作者/读者索取更多资源

Using various plant materials, we identified two conceptual pools of plant litter, decomposable plant material (DPM) and resistant plant material (RPM), in the Rothamsted Carbon Model (RothC) by comparing the default proportions of DPM and RPM in the RothC and proportions in plant material fractions as determined by two-step acid hydrolysis with H2SO4. We collected 37 plant samples from 15 species at six sites on arable land, grassland, or forest in Japan. Carbon in the plant materials was divided into three pools by acid hydrolysis: (a) Labile Pool I (LP I), obtained by hydrolysis with 5 N H2SO4 at 105 degrees C for 30 min; (b) Labile Pool II (LP II), obtained by hydrolysis with 26 N H-2 SO4 at room temperature overnight, and then with 2 N H2SO4 at 105 C for 3 h; and (c) Recalcitrant Pool (RP), the unhydrolyzed residue. The average proportion of LP I in crops and grasses was 59%, which was the same as the proportion of DPM defined in the RothC as the default value for crops and grasses. The remaining 41% (23% LP II + 18% RP) was consequently the same as the RPM proportion defined in the RothC. Similarly, the average proportion of LP I in all tree leaves (19%) was very close to the proportion of DPM in the RothC (20%) for trees. These results indicate that DPM in the RothC can be identified as LP I from the acid hydrolysis analysis and RPM as LP II+RP. We conclude that, at least theoretically, the use of an independent DPM:RPM ratio, as determined by acid hydrolysis analysis for each plant material, should enable more reliable modeling of SOM dynamics than the use of default DPM:RPM values provided by the model, even though the practical advantages of this method require further evaluation. (c) 2005 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据