4.7 Article

Liver-Assist Device With a Microfluidics-Based Vascular Bed in an Animal Model

期刊

ANNALS OF SURGERY
卷 252, 期 2, 页码 351-357

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/SLA.0b013e3181e982ba

关键词

-

类别

资金

  1. Center for Integration of Medicine and Innovative Technology (US Army) [DAMD17-02-2-0006]

向作者/读者索取更多资源

Objective: This study evaluates a novel liver-assist device platform with a microfluidics-modeled vascular network in a femoral arteriovenous shunt in rats. Summary of Background Data: Liver-assist devices in clinical trials that use pumps to force separated plasma through packed beds of parenchymal cells exhibited significant necrosis with a negative impact on function. Methods: Microelectromechanical systems technology was used to design and fabricate a liver-assist device with a vascular network that supports a hepatic parenchymal compartment through a nanoporous membrane. Sixteen devices with rat primary hepatocytes and 12 with human HepG2/C3A cells were tested in athymic rats in a femoral arteriovenous shunt model. Several parenchymal tube configurations were evaluated for pressure profile and cell survival. The blood flow pattern and perfusion status of the devices was examined by laser Doppler scanning. Cell viability and serum protein secretion functions were assessed. Results: Femoral arteriovenous shunt was successfully established in all animals. Blood flow was homogeneous through the vascular bed and replicated native flow patterns. Survival of seeded liver cells was highly dependent on parenchymal chamber pressures. The tube configuration that generated the lowest pressure supported excellent cell survival and function. Conclusions: This device is the first to incorporate a microfluidics network in the systemic circulatory system. The microvascular network supported viability and function of liver cells in a short-term ex vivo model. Parenchymal chamber pressure generated in an arteriovenous shunt model is a critical parameter that affects viability and must be considered in future designs. The microfluidics-based vascular network is a promising platform for generating a large-scale medical device capable of augmenting liver function in a clinical setting.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据