4.6 Article

Oxygen adsorption and stability of surface oxides on Cu(111): A first-principles investigation

期刊

PHYSICAL REVIEW B
卷 73, 期 16, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.73.165424

关键词

-

向作者/读者索取更多资源

As a first step towards gaining microscopic understanding of copper-based catalysts, e.g., for the low-temperature water-gas shift reaction and methanol oxidation reactions, we present density-functional theory calculations investigating the chemisorption of oxygen, and the stability of surface oxides on Cu(111). We report atomic geometries, binding energies, and electronic properties for a wide range of oxygen coverages, in addition to the properties of bulk copper oxide. Through calculation of the Gibbs free energy, taking into account the temperature and pressure via the oxygen chemical potential, we obtain the (p,T) phase diagram of O/Cu(111). Our results show that for the conditions typical of technical catalysis the bulk oxide is thermodynamically most stable. If, however, formation of this fully oxidized surface is prevented due to a kinetic hindering, a thin surface-oxide structure is found to be energetically preferred compared to chemisorbed oxygen on the surface, even at very low coverage. Similarly to the late 4d transition metals (Ru, Rh, Pd, Ag), sub-surface oxygen is found to be energetically unfavorable.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据