4.7 Article

In situ AFM study of the dissolution and recrystallization behaviour of polished and stressed calcite surfaces

期刊

GEOCHIMICA ET COSMOCHIMICA ACTA
卷 70, 期 7, 页码 1728-1738

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.gca.2005.12.013

关键词

-

向作者/读者索取更多资源

We investigated the dissolution behaviour of polished calcite surfaces in situ using a fluid-cell atomic force microscope. Polished calcite surfaces enabled us to study the effects of applied surface stress and crystallographic orientation on calcite dissolution pattern formation. Thin-sections of Iceland spar single-crystals polished either parallel or with a 5 degrees miscut angle to {10 (1) over bar4} cleavage planes were studied. Compressive surface stresses of up to 50 MPa were applied to some of the thin-section samples by means of elastic concave bending. Experiments were carried out in semi-stagnant deionized water under mainly transport limited dissolution conditions. Samples polished parallel to {10 (1) over bar4} cleavage planes dissolved by the formation of etch-pits originating from polishing defects. The dissolution behaviour of 5 degrees miscut surfaces was relatively unaffected by polishing defects, since no etch-pits developed in these samples. Dissolution of the miscut samples led to stepped or rippled surface patterns on the nanometer scale that coarsened during the first 30-40 min of the experiments. Possible reasons for the pattern-coarsening were: (i) progressive bunching of retreating dissolution steps and (ii) surface energy driven recrystallization (Ostwald ripening) under transport limited dissolution conditions. A flat polished miscut surface in calcite may recrystallize into a hill-and-valley structure in a (near-)saturated solution so as to lower its total surface free energy in spite of a larger surface area. No clear effect of applied stress on dissolution pattern formation has been observed. (c) 2006 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据