4.7 Article

Joint identification of plant rational models and noise distribution functions using binary-valued observations

期刊

AUTOMATICA
卷 42, 期 4, 页码 535-547

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.automatica.2005.12.004

关键词

system identification; estimation; binary-valued observations; identifiability; parameter convergence; recursive algorithms

向作者/读者索取更多资源

System identification of plants with binary-valued output observations is of importance in understanding modeling capability and limitations for systems with limited sensor information, establishing relationships between communication resource limitations and identification complexity, and studying sensor networks. This paper resolves two issues arising in such system identification problems. First, regression structures for identifying a rational model contain non-smooth nonlinearities, leading to a difficult nonlinear filtering problem. By introducing a two-step identification procedure that employs periodic signals, empirical measures, and identifiability features, rational models can be identified without resorting to complicated nonlinear searching algorithms. Second, by formulating a joint identification problem, we are able to accommodate scenarios in which noise distribution functions are unknown. Convergence of parameter estimates is established. Recursive algorithms for joint identification and their key properties are further developed. (c) 2006 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据