4.3 Article

Shrinking and cooling of flare loops in a two-ribbon flare

期刊

SOLAR PHYSICS
卷 234, 期 2, 页码 273-299

出版社

SPRINGER
DOI: 10.1007/s11207-006-0093-6

关键词

-

向作者/读者索取更多资源

We analyze the evolution of the flare/postflare-loop system in the two-ribbon flare of November 3, 2003, utilizing multi-wavelength observations that cover the temperature range from several tens of MK down to 10(4) K. A non-uniform growth of the loop system enables us to identify analogous patterns in the height - time, h(t), curves measured at different temperatures. The knees, plateaus, and bends in a higher-temperature curve appear after a certain time delay at lower heights in a lower-temperature curve. We interpret such a shifted replication as a track of a given set of loops ( reconnected field lines) while shrinking and cooling after being released from the reconnection site. Measurements of the height/time shifts between h( t) curves of different temperatures provide a simultaneous estimate of the shrinkage speed and cooling rate in a given temperature domain, for a period of almost ten hours after the flare impulsive phase. From the analysis we find the following: ( a) Loop shrinkage is faster at higher temperatures - in the first hour of the loop-system growth, the shrinkage velocity at 5 MK is 20 - 30 km s(-1), whereas at 1 MK it amounts to 5 km s(-1); (b) Shrinking becomes slower as the flare decays - ten hours after the impulsive phase, the shrinkage velocity at 5 MK becomes 5 km s(-1); ( c) The cooling rate decreases as the flare decays - in the 5 MK range it is 1 MK min(-1) in the first hour of the loop-system growth, whereas ten hours later it decreases to 0.2 MK min(-1); (d) During the initial phase of the loop-system growth, the cooling rate is larger at higher temperatures, whereas in the late phases the cooling rate apparently does not depend on the temperature; ( e) A more detailed analysis of shrinking/cooling around one hour after the impulsive phase reveals a deceleration of the loop shrinkage, amounting to (a) over bar approximate to 10 m s(-2) in the T < 5 MK range; (f) In the same interval, conductive cooling dominates down to T approximate to 3 MK, whereas radiation becomes dominant below T approximate to 2 MK; (g) A few hours after the impulsive phase, radiation becomes dominant across the whole T < 5 MK range. These findings are compared with results of previous studies and discussed in the framework of relevant models.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据