4.3 Article

Superconductivity emerging near quantum critical point of valence transition

期刊

出版社

PHYSICAL SOC JAPAN
DOI: 10.1143/JPSJ.75.043710

关键词

CeCu2Ge2; valence transition; quantum critical point; valence fluctuation; superconductivity; DMRG; periodic Anderson model

向作者/读者索取更多资源

The nature of the quantum valence transition is studied in the one-dimensional periodic Anderson model with Coulomb repulsion between f and conduction electrons by the density-matrix renormalization group method. It is found that the first-order valence transition emerges with the quantum critical point and the crossover from the Kondo to the mixed-valence states is strongly stabilized by quantum fluctuation and electron correlation. It is found that the superconducting correlation is developed in the Kondo regime near the sharp valence increase. The origin of the superconductivity is ascribed to the development of the coherent motion of electrons with enhanced valence fluctuation, which results in the enhancement of the charge velocity, but not of the charge compressibility. Statements on the valence transition in connection with Ce metal and Ce compounds are given.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据