4.3 Article Proceedings Paper

Recent progress with large-scale ab initio calculations:: the CONQUEST code

期刊

出版社

WILEY-BLACKWELL
DOI: 10.1002/pssb.200541386

关键词

-

向作者/读者索取更多资源

While the success of density functional theory (DFT) has led to its use in a wide variety of fields such as physics, chemistry, materials science and biochemistry, it has long been recognised that conventional methods are very inefficient for large complex systems, because the memory requirements scale as N(2) and the cpu requirements as N(3) (where N is the number of atoms). The principles necessary to develop methods with linear scaling of the cpu and memory requirements with system size (O(N) methods) have been established for more than ten years, but only recently have practical codes showing this scaling for DFT started to appear. We report recent progress in the development of the CONQUEST code, which performs O(N) DFT calculations on parallel computers, and has a demonstrated ability to handle systems of over 10000 atoms. The code can be run at different levels of precision, ranging from empirical tight-binding, through ab initio tight-binding, to full ab initio, and techniques for calculating ionic forces in a consistent way at all levels of precision will be presented. Illustrations are given of practical CONQUEST calculations in the strained Ge/Si(001) system. (c) 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据