4.8 Article

Assessment of the integral membrane protein topology in living cells

期刊

PLANT JOURNAL
卷 46, 期 1, 页码 145-154

出版社

WILEY-BLACKWELL PUBLISHING, INC
DOI: 10.1111/j.1365-313X.2006.02674.x

关键词

protein fragment complementation assay; fluorescent protein; intracellular localization; movement protein

向作者/读者索取更多资源

The bimolecular fluorescence complementation ( BiFC) phenomenon has been successfully applied for in vivo protein - protein interaction studies and protein tagging analysis. Here we report a novel BiFC- based technique for investigation of integral membrane protein topology in living plant cells. This technique relies on the formation of a fluorescent complex between a non- fluorescent fragment of the yellow fluorescent protein ( YFP) targeted into a specific cellular compartment and a counterpart fragment attached to the integral membrane protein N- or C- terminus or inserted into the internal loop( s). We employed this technique for topological studies of beet yellows virus- encoded p6 membrane- embedded movement protein, a protein with known topology, and the potato mop- top virus- encoded integral membrane TGBp2 protein with predicted topology. The results confirm that p6 is a type III integral transmembrane protein. Using a novel method, the central hydrophilic region of TGBp2 was localized into the ER lumen, whereas the N- and C- termini localized to the cytosol. We conclude that the BiFC- based reporter system for membrane protein topology analysis is a relatively fast and efficient method that can be used for high- throughput analysis of proteins integrated into the endoplasmic reticulum in living plant cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据