4.5 Article

Organic overlayer model of a dental composite analyzed by laser desorption postionization mass spectrometry and photoemission

期刊

出版社

WILEY
DOI: 10.1002/jbm.a.30591

关键词

biodegradation; interface; dental composite; surface morphology; amorphous silicon oxide

资金

  1. NIDCR NIH HHS [DE-07979] Funding Source: Medline

向作者/读者索取更多资源

Some dental composites consist of a polymerizable resin matrix bound to glass filler particles by silane coupling agents. The resin in these composites includes bisphenol A diglycidyl methacrylate (Bis-GMA) as well as other organic components. Silane coupling agents such as 3-(trimethoxysilyl) propyl methacrylate (MPS) have been used to improve the mechanical properties of the dental composites by forming a covalent bond between the glass filler particles and the resin. These resin-glass composites undergo material property changes during exposure to the oral environment, but degradation studies of the commercial composites are severely limited by their chemical complexity. A simplified model of the dental composite has been developed, which captures the essential chemical characteristics of the filler particle-silane-resin interface. This model system consists of the resin matrix compound Bis-GMA phous silicon oxide (SiO2) surface via a siloxane bond. Scanning electron microscopy shows the porous characteristic and elemental composition of the SiO2 film, which approximately mimics that of the glass filler particles used in dental composites. LDPI MS and XPS verify the chemistry and morphology of the Bis-GMA-methacryloyl overlayer. Preliminary results demonstrate that LDPI MS will be able to follow the chemical processes resulting from aging Bis-GMA-methacryloyl overlayers aged in water, artificial saliva, or other aging solutions. (c) 2005 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据