4.7 Article

Cortical pain responses in human infants

期刊

JOURNAL OF NEUROSCIENCE
卷 26, 期 14, 页码 3662-3666

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.0348-06.2006

关键词

nociception; analgesia; neonatal; pediatric; spectroscopy; cerebral oxygenation

资金

  1. Medical Research Council [G0502146] Funding Source: Medline
  2. Wellcome Trust Funding Source: Medline
  3. Medical Research Council [G0502146] Funding Source: researchfish
  4. MRC [G0502146] Funding Source: UKRI

向作者/读者索取更多资源

Despite the recent increase in our understanding of the development of pain processing, it is still not known whether premature infants are capable of processing pain at a cortical level. In this study, changes in cerebral oxygenation over the somatosensory cortex were measured in response to noxious stimulation using real-time near-infrared spectroscopy in 18 infants aged between 25 and 45 weeks postmenstrual age. The noxious stimuli were heel lances performed for routine blood sampling; no blood tests were performed solely for the purpose of the study. Noxious stimulation produced a clear cortical response, measured as an increase in total hemoglobin concentration [HbT] in the contralateral somatosensory cortex, from 25 weeks (mean Delta[HbT] = 7.74 mu mol/L; SE, 1.10). Cortical responses were significantly greater in awake compared with sleeping infants, with a mean difference of 6.63 mu mol/L [95% confidence interval (CI) limits: 2.35, 10.91 mu mol/L; mean age, 35.2 weeks]. In awake infants, the response in the contralateral somatosensory cortex increased with age ( regression coefficient, 0.698 mu mol/L/week; 95% CI limits: 0.132, 1.265 mu mol/L/week) and the latency decreased with age (regression coefficient, -0.9861 mu mol/L/week; 95% CI limits: -1.5361, -0.4361 mu mol/L/week; age range, 25-38 weeks). The response was modality specific because no response was detected after non-noxious stimulation of the heel, even when accompanied by reflex withdrawal of the foot. We conclude that noxious information is transmitted to the preterm infant cortex from 25 weeks, highlighting the potential for both higher-level pain processing and pain-induced plasticity in the human brain from a very early age.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据