4.6 Article

A critical assessment of the impact of mixing on dilution refolding

期刊

BIOTECHNOLOGY AND BIOENGINEERING
卷 93, 期 5, 页码 955-963

出版社

WILEY-BLACKWELL
DOI: 10.1002/bit.20796

关键词

refolding; mixing; lysozyme; inclusion bodies; aggregation; denaturation

向作者/读者索取更多资源

Refolding often presents a bottleneck in the generation of recombinant protein expressed as inclusion bodies. Few studies have looked at the effect of physical factors on the yield from refolding steps. Refold reactors typically operate in fed-batch mode with a slow injection rate. This paper characterizes mixing in a novel reactor, and seeks to relate the conditions of mixing to native lysozyme yields after refolding. A novel twin-impeller system incorporating a mini-paddle impeller located in the vicinity of the injection point was used to increase the local levels of energy dissipation experienced by the injected material, and to improve refolding yields. Mixing only affected yields during and immediately after denatured protein addition. Analysis of lysozyme refolding yield, under a variety of conditions, revealed that dispersive mixing affected the yield. The beneficial effect of the mini-paddle impeller in providing a source of localized energy dissipation was limited to conditions where the bulk impeller intensity was low. The effects appeared to become more significant when injection times were longer, because of increased exposure of the injected material to the energy dissipation of the mini-impeller. The results suggest that for fed-batch protein refolding systems, where mixing has been shown to be a critical factor, the local energy dissipation experienced in the vicinity of the injection point is critical to the refolding yields. (c) 2005 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据