4.7 Article

Physico-chemical interpretation of the SRNF transport mechanism for solutes through dense silicone membranes

期刊

JOURNAL OF MEMBRANE SCIENCE
卷 274, 期 1-2, 页码 173-182

出版社

ELSEVIER
DOI: 10.1016/j.memsci.2005.08.009

关键词

solvent resistant nanofiltration; transport mechanism; solutes; silicone membranes

向作者/读者索取更多资源

Insight in the mechanism of solute transport through dense silicone solvent resistant nanofiltration (SRNF) membranes was obtained by filtering a selection of dyes dissolved in alcohols. By measuring the distribution coefficient of the solute between feed and membrane, it was concluded that both charge and solvent play an important role in solute uptake. Both the reformulated solution-diffusion model of Paul and the Kedem-Katchalsky model were used to explain the solute fluxes. In the analysis of the data, a distinction was made between solutes with low and high molar volume. For the former, the convective flux had a more important contribution, especially when high swelling increased the available space between the polymer chains. Also, a higher dependency of charge was noticed in this group of solutes. For solutes with higher molar volume, the contribution of the diffusive flux stayed dominant. Solute mobility was generally strongly influenced by the state of the solvent in the membrane and the solvent viscosity. The state of the solvent inside the membrane matrix was studied by differential scanning calorimetry. (c) 2005 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据