4.8 Article

Quantum interference between two single photons emitted by independently trapped atoms

期刊

NATURE
卷 440, 期 7085, 页码 779-782

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nature04628

关键词

-

向作者/读者索取更多资源

When two indistinguishable single photons are fed into the two input ports of a beam splitter, the photons will coalesce and leave together from the same output port. This is a quantum interference effect, which occurs because two possible paths - in which the photons leave by different output ports - interfere destructively. This effect was first observed in parametric downconversion(1) ( in which a nonlinear crystal splits a single photon into two photons of lower energy), then from two separate downconversion crystals(2), as well as with single photons produced one after the other by the same quantum emitter(3-6). With the recent developments in quantum information research, much attention has been devoted to this interference effect as a resource for quantum data processing using linear optics techniques(2,7-11). To ensure the scalability of schemes based on these ideas, it is crucial that indistinguishable photons are emitted by a collection of synchronized, but otherwise independent sources. Here we demonstrate the quantum interference of two single photons emitted by two independently trapped single atoms, bridging the gap towards the simultaneous emission of many indistinguishable single photons by different emitters. Our data analysis shows that the observed coalescence is mainly limited by wavefront matching of the light emitted by the two atoms, and to a lesser extent by the motion of each atom in its own trap.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据