4.7 Article

Mesoscale simulation of morphology in hydrated perfluorosulfonic acid membranes

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 124, 期 13, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2177649

关键词

-

向作者/读者索取更多资源

Current fuel cell proton exchange membranes rely on a random network of conducting hydrophilic domains to transport protons across the membrane. Despite extensive investigation, details of the structure of the hydrophilic domains in these membranes remain unresolved. In this study a dynamic self-consistent mean field theory has been applied to obtain the morphologies of hydrated perfluorosulfonic acid membranes (equivalent weight of 1100) as a model system for Nafion (R) at several water contents. A coarse-grained mesoscale model was developed by dividing the system into three components: backbone, side chain, and water. The interaction parameters for this model were generated using classical molecular dynamics. The simulated morphology shows phase separated micelles filled with water, surrounded by side chains containing sulfonic groups, and embedded in the fluorocarbon matrix. The size distribution and connectivity of the hydrophilic domains were analyzed and the small angle neutron scattering (SANS) pattern was calculated. At low water content (lambda < 6, where lambda is the number of water molecules per sulfonic group) the isolated domains obtained from simulation are nearly spherical with a domain size smaller than that fitted to experimental SANS data. At higher water content (lambda > 8), the domains deform into elliptical and barbell shapes as they merge. The simulated morphology, hydrophilic domain size and shape are generally consistent with some experimental observations. (c) 2006 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据