4.6 Article

20S proteasomes have the potential to keep substrates in store for continual degradation

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 281, 期 14, 页码 9569-9575

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M511951200

关键词

-

向作者/读者索取更多资源

The 20S core of the proteasome, which together with the regulatory particle plays a major role in the degradation of proteins in eukaryotic cells, is traversed by an internal system of cavities, namely two antechambers and one central proteolytic chamber. Little is known about the mechanisms underlying substrate binding and translocation of polypeptide chains into the interior of 20S proteasomes. Specifically, the role of the antechambers is not fully understood, and the number of substrate molecules sequestered within the internal cavities at any one time is unknown. Here we have shown that by applying both electron microscopy and tandem mass spectrometry ( MS) approaches to this multisubunit complex we obtain precise information regarding the stoichiometry and location of substrates within the three chambers. The dissociation pattern in tandem MS allows us to conclude that a maximum of three green fluorescent protein and four cytochrome c substrate molecules are bound within the cavities. Our results also show that > 95% of the population of proteasome molecules contain the maximum number of partially folded substrates. Moreover, we deduce that one green fluorescent protein or two cytochrome c molecules must reside within the central proteolytic chamber while the remaining substrate molecules occupy, singly, both antechambers. The results imply therefore an additional role for 20S proteasomes in the storage of substrates prior to their degradation, specifically in cases where translocation rates are slower than proteolysis. More generally, the ability to locate relatively small protein ligands sequestered within the 28-subunit core particle highlights the tremendous potential of tandem MS for deciphering substrate binding within large macromolecular assemblies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据