4.8 Article

Emission and absorption asymmetry in the quantum noise of a Josephson junction

期刊

PHYSICAL REVIEW LETTERS
卷 96, 期 13, 页码 -

出版社

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevLett.96.136804

关键词

-

向作者/读者索取更多资源

We measure current fluctuations of mesoscopic devices in the quantum regime, when the frequency is of the order of or higher than the applied voltage or temperature. Detection is designed to probe separately the absorption and emission contributions of current fluctuations, i.e. the positive and negative frequencies of the Fourier transformed nonsymmetrized noise correlator. It relies on measuring the quasiparticles photon assisted tunneling current across a superconductor-insulator-superconductor junction (the detector junction) caused by the excess current fluctuations generated by quasiparticles tunneling across a Josephson junction (the source junction). We demonstrate unambiguously that the negative and positive frequency parts of the nonsymmetrized noise correlator are separately detected and that the excess current fluctuations of a voltage biased Josephson junction present a strong asymmetry between emission and absorption.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据