4.7 Article

Magnetoconvection in a sunspot umbra

期刊

ASTROPHYSICAL JOURNAL
卷 641, 期 1, 页码 L73-L76

出版社

IOP PUBLISHING LTD
DOI: 10.1086/503772

关键词

methods : numerical; MHD; Sun : magnetic fields; Sun : photosphere; sunspots

向作者/读者索取更多资源

Results from a realistic simulation of three-dimensional radiative magnetoconvection in a strong background magnetic field corresponding to the conditions in sunspot umbrae are shown. The convective energy transport is dominated by narrow upflow plumes with adjacent downflows, which become almost field-free near the surface layers. The strong external magnetic field forces the plumes to assume a cusplike shape in their top parts, where the upflowing plasma loses its buoyancy. The resulting bright features in intensity images correspond well ( in terms of brightness, size, and lifetime) to the observed umbral dots in the central parts of sunspot umbrae. Most of the simulated umbral dots have a horizontally elongated form with a central dark lane. Above the cusp, most plumes show narrow upflow jets, which are driven by the pressure of the piled-up plasma below. The large velocities and low field strengths in the plumes are effectively screened from spectroscopic observation because the surfaces of equal optical depth are locally elevated, so that spectral lines are largely formed above the cusp. Our simulations demonstrate that nearly field-free upflow plumes and umbral dots are a natural result of convection in a strong, initially monolithic magnetic field.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据