4.5 Article

Validation of an optical sensor-based high-throughput bioreactor system for mammalian cell culture

期刊

JOURNAL OF BIOTECHNOLOGY
卷 122, 期 3, 页码 293-306

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jbiotec.2005.12.009

关键词

optical sensor; non-invasive; high-throughput bioreactor; mammalian cell culture; transcriptional profiling

向作者/读者索取更多资源

Cell culture optimization is a labor-intensive process requiring a large number of experiments to be conducted under varying conditions. Here we describe a high-throughput bioreactor system that allows 12 mini stirred-tank bioreactors to be operated simultaneously. All bioreactors are monitored by low-cost minimally invasive optical sensors for pH and dissolved oxygen. The sensors consist of single-use patches affixed inside the bioreactors and monitored optically from the outside. Experimental results show that different sensing patches with the same composition respond consistently. The discrepancy between different pH sensors is less than 0.1 pH units over most of their responsive range. The discrepancy between different dissolved oxygen sensors is less than 10% over the whole range from 0% to 100% dissolved oxygen. The consistency of the sensing system ensures that only an initial one-time calibration is required for the sensing patches. After that, a calibration code is generated and sensing patches of the same composition can be used directly. This greatly reduces the time and cost required for monitored multi-bioreactor operations. We used SP2/0 myeloma/mouse hybridoma cell cultures to demonstrate reactor performance consistency. Transcriptional profiling, HPLC analysis, viable cell count, and viability inspection show that the presence of sensing patches and the use of optical monitoring have no apparent effect on the metabolism of the cells. (c) 2006 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据