4.5 Article

Localization of the neurons active during paradoxical (REM) sleep and projecting to the locus coeruleus noradrenergic neurons in the rat

期刊

JOURNAL OF COMPARATIVE NEUROLOGY
卷 495, 期 5, 页码 573-586

出版社

WILEY
DOI: 10.1002/cne.20891

关键词

REM sleep; Fos; retrograde tracer; cholera toxin B subunit; noradrenaline; GABA; arousal systems

向作者/读者索取更多资源

Locus coeruleus (LC) noradrenergic neurons are active during wakefulness, slow their discharge rate during slow wave sleep, and stop firing during paradoxical sleep (PS). A large body of data indicates that their inactivation during PS is due to a tonic GABAergic inhibition. To localize the neurons responsible for such inhibition, we first examined the distribution of retrogradely and Fos double-immunostained neurons following cholera toxin b subunit (CTb) injection in the LC of control rats, rats selectively deprived of PS for 3 days, and rats allowed to recover for 3 hours from such deprivation. We found a significant number of CTb/Fos double-labeled cells only in the recovery group. The largest number of CTb/Fos double-labeled cells was found in the dorsal paragigantocellular reticular nucleus (DPGi). It indeed contained 19% of the CTb/Fos double-labeled neurons, whereas the ventrolateral periaqueductal gray (vlPAG) contained 18.3% of these neurons, the lateral paragigantocellular reticular nucleus (LPGi) 15%, the lateral hypothalamic area 9%, the lateral PAG 6.7%, and the rostral PAG 6%. In addition, CTb/Fos double-labeled cells constituted 43% of all the singly GTb-labeled cells counted in the DPGi compared with 29% for the LPGi, 18% for the rostral PAG, and 10% or less for the other structures. Although all these populations of CTb/Fos double-labeled neurons could be GABAergic and tonically inhibit LC neurons during PS, our results indicate that neurons from the DPGi constitute the best candidate for this role.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据