4.7 Article

Heating rate profiles in galaxy clusters

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1111/j.1365-2966.2006.10032.x

关键词

hydrodynamics; galaxies : active; galaxies : clusters; general; cooling flows

资金

  1. STFC [PP/D001013/1] Funding Source: UKRI
  2. Science and Technology Facilities Council [PP/D001013/1] Funding Source: researchfish

向作者/读者索取更多资源

In recent years, evidence has accumulated suggesting that the gas in galaxy clusters is heated by non-gravitational processes. Here, we calculate the heating rates required to maintain a physically motivated mass flow rate, in a sample of seven galaxy clusters. We employ the spectroscopic mass deposition rates as an observational input along with temperature and density data for each cluster. On energetic grounds, we find that thermal conduction could provide the necessary heating for A2199, Perseus, A1795 and A478. However, the suppression factor of the classical Spitzer value is a different function of radius for each cluster. Based on the observations of plasma bubbles, we also calculate the duty cycles for each active galactic nucleus (AGN), in the absence of thermal conduction, which can provide the required energy input. With the exception of Hydra-A, it appears that each of the other AGNs in our sample requires duty cycles of roughly 10(6)-10(7) yr to provide their steady-state heating requirements. If these duty cycles are unrealistic, this may imply that many galaxy clusters must be heated by very powerful Hydra-A type events interspersed between more frequent smaller scale outbursts. The suppression factors for the thermal conductivity required for combined heating by AGN and thermal conduction are generally acceptable. However, these suppression factors still require 'fine-tuning' of the thermal conductivity as a function of radius. As a consequence of this work, we present the AGN duty cycle as a cooling flow diagnostic.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据