4.7 Article

Rapid taste responses in the gustatory cortex during licking

期刊

JOURNAL OF NEUROSCIENCE
卷 26, 期 15, 页码 4126-4138

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.0092-06.2006

关键词

gustatory cortex; taste; generalized linear model; licking; electrophysiology; fixed ratio schedule

资金

  1. NIDCD NIH HHS [DC-01065] Funding Source: Medline

向作者/读者索取更多资源

Rapid tastant detection is necessary to prevent the ingestion of potentially poisonous compounds. Behavioral studies have shown that rats can identify tastants in similar to 200 ms, although the electrophysiological correlates for fast tastant detection have not been identified. For this reason, we investigated whether neurons in the primary gustatory cortex (GC), a cortical area necessary for tastant identification and discrimination, contain sufficient information in a single lick cycle, or similar to 150 ms, to distinguish between tastants at different concentrations. This was achieved by recording neural activity in GC while rats licked four times without a liquid reward, and then, on the fifth lick, received a tastant (FR5 schedule). We found that 34% (61 of 178) of GC units were chemosensitive. The remaining neurons were activated during some phase of the licking cycle, discriminated between reinforced and unreinforced licks, or processed task-related information. Chemosensory neurons exhibited a latency of 70-120 ms depending on concentration, and a temporally precise phasic response that returned to baseline in tens of milliseconds. Tastant-responsive neurons were broadly tuned and responded to increasing tastant concentrations by either increasing or decreasing their firing rates. In addition, some responses were only evoked at intermediate tastant concentrations. In summary, these results suggest that the gustatory cortex is capable of processing multimodal information on a rapid timescale and provide the physiological basis by which animals may discriminate between tastants during a single lick cycle.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据