4.7 Article

Optimal control of ultrafast laser driven many-electron dynamics in a polyatomic molecule:: N-methyl-6-quinolone

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 124, 期 14, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2185633

关键词

-

向作者/读者索取更多资源

We report time-dependent configuration interaction singles calculations for the ultrafast laser driven many-electron dynamics in a polyatomic molecule, N-methyl-6-quinolone. We employ optimal control theory to achieve a nearly state-selective excitation from the S-0 to the S-1 state, on a time scale of a few (approximate to 6) femtoseconds. The optimal control scheme is shown to correct for effects opposing a state-selective transition, such as multiphoton transitions and other, nonlinear phenomena, which are induced by the ultrashort and intense laser fields. In contrast, simple two-level pi pulses are not effective in state-selective excitations when very short pulses are used. Also, the dependence of multiphoton and nonlinear effects on the number of states included in the dynamical simulations is investigated. (c) 2006 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据