4.7 Article

Dielectric properties of glycerol/water mixtures at temperatures between 10 and 50 °C -: art. no. 144512

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 124, 期 14, 页码 -

出版社

AIP Publishing
DOI: 10.1063/1.2188391

关键词

-

向作者/读者索取更多资源

At six temperatures T between 10 and 50 degrees C and at mole fractions x(g) of glycerol (0 < x(g)<= 0.9) the complex (electric) permittivity epsilon(nu) of glycerol/water mixtures has been measured as a function of frequency nu between 1 MHz and 40 GHz. The spectra of the glycerol/water mixtures can be well represented by a Davidson-Cole [J. Chem. Phys. 18, 1417 (1950)] relaxation function that reveals an unsymmetric relaxation time distribution. The effective dipole orientation correlation factor derived from the static permittivity displays an unspectacular behavior upon mixture composition. The dielectric relaxation time reveals a simple relation to the shear viscosity of the mixtures, but both quantities are not proportional to one another. The relaxation times at high temperatures nicely complement previously determined low temperature data, following a Vogel-Fulcher-Tammann-Hesse [Z. Phys. 22, 645 (1925); J. Am. Chem. Ceram. Soc. 8, 339 (1923); Z. Anorg. Allg. Chem. 156, 245 (1926)] (VFTH) temperature dependence. When the Eyring behavior is assumed a limiting high temperature form of the VFTH relation, enthalpy, and entropy of activation values are found which adopt significantly higher values in the glycerol rich mixtures than in the water rich liquids. The relaxation time distribution parameter at high water content indicates a dynamically heterogeneous structure of the liquids. Likely there exist glycerol rich and water rich microphases. (c) 2006 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据