4.5 Article

Extracellular adenosine activates AMP-dependent protein kinase (AMPK)

期刊

JOURNAL OF CELL SCIENCE
卷 119, 期 8, 页码 1612-1621

出版社

COMPANY BIOLOGISTS LTD
DOI: 10.1242/jcs.02865

关键词

adenosine; AMPK; transport; CNT2; ACC

向作者/读者索取更多资源

Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a heterotrimeric complex that senses intracellular energy status and exerts rapid regulation on energy-demanding and -consuming metabolic pathways. Although alterations in the intracellular adenosine nucleotide pool are traditionally assumed to be the consequence of changes in energy metabolism, in this study we have addressed the question of whether extracellular adenosine contributes to AMPK regulation. In the intestinal rat epithelial cell line IEC-6, addition of adenosine rapidly increases AMP intracellular concentrations and upregulates alpha 1AMPK, thus promoting phosphorylation of its downstream target acetyl-CoA carboxylase (ACC). The effect of adenosine on AMPK signaling is completely blocked by transducing IEC-6 cells with an adenoviral vector expressing a mutated alpha 1 subunit, resulting in a dominant-negative effect on endogenous AMPK activity. These effects are blocked by 5'-iodotubercidine (5'-ITU), an inhibitor of adenosine kinase. Moreover, inhibition of adenosine transport through the concentrative adenosine plasma membrane transporter CNT2 with formycin B results in the blockade of adenosine-mediated AMPK signaling. Extracellular adenosine is equally able to activate AMPK and promote ACC phosphorylation in liver parenchymal cell models in a manner that is also inhibited by 5'-ITU. In summary, this study shows that adenosine, when added at physiological concentrations, activates AMPK and promotes ACC phosphorylation. Adenosine must be transported and phosphorylated to exert its action. Thus, nucleoside transporters might be novel players in the complex regulation of AMPK and energy metabolism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据