4.6 Article

Hard magnetic FePt nanoparticles by salt-matrix annealing

期刊

JOURNAL OF APPLIED PHYSICS
卷 99, 期 8, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2166597

关键词

-

向作者/读者索取更多资源

To transfer face-centered-cubic (fcc) FePt nanoparticles to the face-centered-tetragonal (fct) phase with high magnetic anisotropy, heat treatments are necessary. The heat treatments lead to agglomeration and sintering of the nanoparticles. To prevent the particles from sintering, salts as the separating media (matrix) have been used for annealing the nanoparticles in our experiments. The fcc nanoparticles produced by chemical synthesis were mixed with NaCl powders. The mixture was then annealed in forming gas (93%H-2+7%Ar) in different conditions to complete the fcc to fct phase transition. After the annealing, the salt was washed out by water and monodisperse fct FePt nanoparticles were obtained. Detailed studies on the effect of the NaCl-to-FePt weight ratios (from 1:1 to 400:1) have been performed. It was found that a suitable NaCl-to-FePt ratio is the key to obtain monodisperse fct FePt nanoparticles. A higher NaCl-to-FePt ratio is needed for larger particles when the annealing conditions are the same. Increased annealing temperature and time should be accompanied by a higher NaCl-to-FePt ratio. Magnetic measurements show very high coercivity (up to 30 kOe) of the monodispersed fct nanoparticles by the salt-matrix annealing. (C) 2006 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据