4.6 Article

Electrical properties of single-wall carbon nanotube-polymer composite films

期刊

JOURNAL OF APPLIED PHYSICS
卷 99, 期 8, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2189931

关键词

-

向作者/读者索取更多资源

The electrical properties of single-walled carbon nanotubes (SWNTs) embedded in a poly(3-octylthiophene) matrix have been investigated as a function of SWNT concentration. The electrical conductivity and its temperature dependence were measured as a function of the SWNT concentration. As the nanotube concentration increased from 0 to 20 wt %, the conductivity of the resulting films is dramatically increased by six orders of magnitude. The enhancement in conductivity can be explained by means of a three dimension simple percolation path theory, resulting in an estimated threshold of 4 wt %. The temperature dependence of the SWNT conductivity mat obeys a three-dimensional variable range hopping. In contrast, the polymer-nanotube composite conductivity follows a fluctuation induced tunneling model. The main divergence is that in the polymer-nanotube composite, the nanotubes are coated with polymer, which acts a barrier in bundle to bundle hopping. (C) 2006 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据