4.6 Article

Gene expression and survival changes in Saccharomyces cerevisiae during suspension culture

期刊

BIOTECHNOLOGY AND BIOENGINEERING
卷 93, 期 6, 页码 1050-1059

出版社

WILEY
DOI: 10.1002/bit.20810

关键词

deletion series; gene array; yeast

向作者/读者索取更多资源

This study explores the connection between changes in gene expression and the genes that determine strain survival during suspension culture, using the model eukaryotic organism, Saccharomyces cerevisiae. The Saccharomyces cerevisiae homozygous diploid deletion pool (HDDP), and the BY4743 parental strain were grown for 18 h in a rotating wall vessel (RWV), a suspension culture device optimized to minimize the delivered shear. In addition to the reduced shear conditions, the RWVs were also placed in a static position or in a shaker in order to change the amount of shear stress on the cells. Using simple linear regression, it was found that there were 140 differentially expressed genes for which >70% of the variation can be explained by shear stress alone. A significant number of these genes are involved in catalytic activity. In the HDDP, shear stress was associated with significant survival changes in 15 deletion strains (R-2 > 0.7) Interestingly, both analyses uncovered changes in the ribosomal protein machinery. Comparing the changes in gene expression and strain survival under the different shear conditions allows for the insights into the molecular mechanisms behind the cells response to shear stress. This in turn can provide information for the optimization of suspension culture. (c) 2006 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据